: -

~[@] -

Commercial
Software

Distributjon
—
F < HANDBOOK />

>

—>

QY
— R

Table of Contents

Assessment .

About the Authors ..o

Table of Contents

Commercial software distribution is the business process that
independent software vendors (ISVs) use to enable enterprise
customers to self-host a fully private instance of the vendor's
application in an environment controlled by the customer.

Since its inception, software distribution into self-hosted
environments has changed drastically. What was once almost
exclusively a process where a Solutions Engineer physically traveled
to a customer’s office, installed software onto dusty servers in a dark
closet, and traveled back to that closet every time an upgrade was
needed, is now replaced with a world of VMs, containers and private
clouds. Yet, the goals for Software Distribution remain the same:
deploy software, quickly and securely, into environments where the
customer has complete visibility and control.

At Replicated, we've been enabling self-hosted software for nearly a
decade and have worked with hundreds of software vendors as they
implement a modern approach to this problem. Over this time, we've
developed a unique expertise in recognizing and implementing the
key steps to distributing software well. Now, we are sharing what
we've learned with you and empowering every software vendor to
transform how their software is distributed.

Intro

To this end, we've developed the Commercial Software Distribution
Lifecycle. Developed through years of trial and error, thousands of
conversations with early-stage startups and Fortune 500
companies, and pulling from the expertise of our staff, the
Commercial Software Distribution Lifecycle represents the stages
that are essential for every company that wants to deliver their
software securely and reliably to customer controlled
environments.

This lifecycle was inspired by the DevOps lifecycle and the SDLC,
but it focuses on the unique things that must be done to
successfully distribute third party, commercial software to tens,
hundreds, or thousands of enterprise customers. The phases are:

Commercial Software
Distribution Lifecycle

3
@)

P

INSTALL

Intro

Develop

Commercial Software
DiStribution LifeCYC|e Develop refers to the technical decisions made by software vendors to

prepare software to be consumed by enterprise customers in on-

prem environments. To provide a seamless experience for customers,
software vendors must consider how an application will be distributed
while developing it—not after the fact. This includes considerations
during the design, architecture, and packaging of the application.
When done well, customers can install the application when and

DEVELOP

where they want to without any major changes to the application’s

architecture.

An application is developed properly for modern on-prem

() deployments when it addresses the following:
Develop Stage
« Portable & Swappable Dependencies
+ Focus On Reliability & Resilience
« Common Packaging & Templating

© The application is resilient. It comes back on failures and is also
built to avoid externally-facing failures. For example, leveraging
cloud-native Kubernetes best practices for packaging will

Patterns . . . - .
_) provide you with a dependable solution for resilience and high
availability.
INSTALL LICENSE | ‘
_r>
_— _—

load balancer

Develop

Develop

The application uses components that are portable, so vendors
and customers are not locked in to specific cloud providers or
services. This makes the application more self-contained and
portable. For example, using an open-source queuing solution like
RabbitMQL as opposed to AWS's SQS will provide more
portability.

The application is packaged with open
standards whenever possible, rather

than providing custom scripts or bespoke

0000

installers. For example, most enterprise

customers are familiar with Helm because

it provides a consistent, reusable, and
shareable packaging format. For customers who aren't familiar
with Helm or Kubernetes, vendors can provide alternative
installation options that treat Kubernetes as a dependency
without exposing it to the customer.

The application follows the principle of least privilege to minimize
the privileges required from the enterprise customer’s cluster,
including avoiding tools that require escalated permissions. For
example, not expecting to be able to deploy operators into
existing clusters as RBAC may not allow it.

The application allows customers the choice of supplying required
services as part of the installation, as opposed to utilizing
whatever services are embedded with the application. For
example, enterprise customers should be able to provide a
connection string to their own database rather than using the
embedded database option.

{ 3\
Application
YAML
database
connection or
string
Default Database

\ | T)

L

Customer’s DB

The application is developed and tested with an understanding
of the different network settings that enterprises will require.
For most applications, the vast majority of enterprise
customers are not going to give inbound access to their
instance of the application. Others will allow outbound access,
either directly or through a proxy. Finally, the most security
conscious customers will not provide any outbound access to
the internet, also known as an air gap environment. These
network settings can complicate installation, updates,
reporting, and application operations if not thoroughly tested.

When developed well, these considerations allow the enterprise
customer to install the software where and how they want to. They
aren't limited by the application’s architecture and are able to bring
their own requirements and tooling when needed. In this way, the
application provides the right amount of structure and flexibility for
the enterprise customer to be successful, whether this is the first self-
hosted application they are deploying or the 100th.

Develop

Commercial Software
Distribution Lifecycle

DEVELOP

Test Stage

+ Validating & Testing In Common
Customer-Representative Environments

« Comprehensive Matrix Of Versions,
Components, Configurations Regularly
Tested

INSTALL

Test

Testing refers to ensuring that enterprise software can be successfully
and reliably distributed to current and future customer-managed
environments. ldeally, testing happens before the application ever
gets into the hands of customers. Different customer environments
act differently, and the same application successfully installed in one
customer environment could present challenges in the next. For this
reason, testing self-hosted software needs to go beyond unit and
integration tests and also focus on the environments where the
application will be deployed.

Software vendors should consider the following when creating a
testing stack for modern on-prem software distribution:

O Expect different customer environments to act differently. For
example, don't anticipate a deployment into an OpenShift
environment to require the same steps as a deployment into
AKS. Each customer-representative environment might require
different elements to be tested.

O Test that different configurations of the application deploy
successfully in the same environment. For example, test
different database configurations or different core services.

Test

Ensure that testing environments are representative of current
customer environments. For example, if different customers
are using AKS and EKS, then tests should validate both those

distributions.

Test for environments that are likely to be supported in the
future, especially if those environments have additional
security requirements or complexity. For example, test highly
complex environments such as OpenShift before ever signing a
customer that uses OpenShift.

Add tests to continuous integration (Cl) pipelines. This ensures
that tests run automatically before each new release without
requiring manual intervention from the team. Logic can also be
added to ClI pipelines to prevent releases from being shipped

unless all tests pass.

Eg > |/ FAL
g —— 5 | [, PAss

> [/ PAss

%? —— > | [, PAss

> |/ FAL
E — 5 |V, PAss

Self-hosted software presents a unique challenge, in that both the
application and the customers’ environments could be the cause for a
failed deployment. Tests should verify that the software functions
correctly, regardless of the environment where it's going to be
deployed. In doing so, vendors will be on the path to satisfy internal
teams and create a positive customer experience where every
deployment is successful on the very first attempt.

. Application Code Continuous
Commit . .
Repository Integration

k3s EKS

Tests Tests

Test// 13

Test

Commercial Software
Distribution Lifecycle

DEVELOP

Release Stage

« Publish Artifact Versions

« Manage Registry/Directory
Control Cadence
Notify Customers Of Releases
Waterlining, Patching Etc

INSTALL

Release

Releasing refers to the process of delivering software to licensed
users, ensuring that new features, improvements, and bug fixes get
into the hands of the right customers at the right frequency.

Key considerations for vendors when releasing modern enterprise
software include:

O Making application images available for customers to access
securely

O Packaging and publishing release artifacts in multiple formats
to support different installation methods and customer
environments

O Managing release streams for different customers, including
automating workflows for production (GA) and pre-release
(alpha, beta) versions

O Versioning releases with a consistent pattern so that it is easy
for customers to understand backward compatibility

The following sections explain each of these considerations in greater

detail.

Release

Securely Accessing Images

A single release for an application contains all the artifacts required to
install and run the application, such as container images or
executables. When publishing a release for distribution to on-prem
environments, software vendors need to make images available to
customers securely.

For online (internet-connected) environments, proxy servers can be
used to grant proxy, or pull-through, access to images. Proxies work
as an intermediary between the software vendor’s private image
registry and the enterprise customer, allowing users to access images
on the vendor’s private registry without exposing registry credentials.
With a proxy, customers can access images using credentials
determined by the software vendor, such as providing their unique

license or customer ID.

- O
-@ - & |- 2 ’
Internal @] Cloud Registry 3 _@
Repos SaaS Proxy .

On-Prem

—

N
r_J

For air gap environments, customers must have access to
downloadable archives that contain the release images so they can
push images to their own registry.

As discussed later in the License and Report phases, all of this activity
can be tracked for auditing and reporting.

Package and Publish Release Artifacts

Releases should be made available in multiple formats to support
different installation methods and customer environments. For
example, while some enterprise customers with Kubernetes expertise
will prefer to install in their own cluster, others will prefer to install on
a virtual machine (VM) or bare metal server. Additionally, enterprises
with an emphasis on security might need to deploy software in air gap
environments with no outbound internet access.

Allow enterprise customers to choose the release asset they need
based on their unique preferences and requirements. For example, a
vendor might need to publish all of the following for a single release:

O Raw artifacts, such as Helm charts or containers

O Downloadable archives that contain the release images for air
gap installations

O Installation scripts, such as scripts that install the application in
Kubernetes clusters or on VMs

o e .
Release assets that are specific to the operating system, such
as unique assets for installations in Linux or Windows
environments
l Release J(
o
HELM i, @
A Air gap bundle Linux VM

Release

Release

Release Management

Release management is also important for ensuring that each release
is made available to the right subset of users (including internal teams
and customers), and that the vendor has control over the frequency
that new releases are published. A successful release management
practice achieves these goals with minimal maintenance burden for
the vendor.

One common release management strategy is publishing releases to
different channels or lanes. For example, vendors might keep
separate channels for internal-only, experimental, beta, and generally
available (GA) releases. Enterprise customers and internal users can
then access the releases published to the channel where they are
subscribed.

2 M|

Customer 1 Channel ¢———| Release 1.2.3

2

Customer 2

N

Channels can be useful as a release management tool because they
allow vendors to create a logical separation between different types of
releases, including those releases intended only for internal
development and testing, without having to manually grant and
restrict access to features or risk prematurely releasing new code.
Channels also provide flexibility in release frequency, allowing
vendors to more quickly publish updates to internal or pre-release
channels while maintaining a different pace for GA releases.

Release

To minimize the need for manual intervention when releasing new
versions, continuous integration and continuous delivery (CI/CD)
pipelines should include workflows that automate release management
and publishing. For example, vendors could create Github workflows
that run tests, publish releases to the right channel, and notify
customers subscribed to the channel that a new version is available.

Release Versioning

Software vendors should assign and increment version numbers for
releases using a consistent pattern, such as Semantic Versioning
(SemVer). SemVer is a commonly-used and recommended versioning
strategy that provides implicit information about the backwards
compatibility of each version, using the format MAJOR.MINOR.PATCH.

The release versioning pattern used should also dictate how build
metadata and pre-release versions are indicated. For example, with
SemVer, alpha or beta versions are denoted by appending a hyphen
followed by the pre-release label or version number, such as 1.0.0-
alpha or 1.2.3-0.0.2.

A consistent versioning pattern such as SemVer is important for
modern commercial software distribution because it is common for
vendors to support (and continue to release patches on) multiple
different versions of their software concurrently. SemVer enables this
because enterprise customers can easily understand that a new patch
release is backwards compatible with the corresponding minor
version, without needing to worry about breaking changes.

141'171'161

Major Version 2 | J/ l% Patches

Major changes Bug fixes
breaks the API Minor Version 8

Minor change doesn't break the API

Release

Commercial Software
Distribution Lifecycle

DEVELOP

License Stage

+ Fine Grained Access Control To
Versions And Images

- Deliver Entitlements (Expiration,
Seat Count Etc)

+ Sign & Validate The Entitlement Values

INSTALL

License

Licensing refers to securely granting access to software. Licensing
codifies the agreements defined in the software contract between the
vendor and the enterprise customer, and makes those agreements
available to the underlying application through a license server during
startup or runtime.

Licensing is a cross-functional concern as it is important to many
different teams that licenses are easy to create, update and sync to
customer instances:

O For Sales teams, the license server that keeps track of users
and entitlements should be integrated with internal CRM tools,
such as Salesforce. This allows customer entitlements to be
easily turned on and off based on changes to the software
contract.

Customer

Vendor Environment Environment

—— O © A
CRM —— o ild
e ﬁ Expiration:

Expiration: 12-05-25 —
12-05-25

License Server

O Support teams should be able to use the license as a unique
customer identifier to get visibility into insights such as the
customer’s entitlements and product usage.

License

For Engineering teames, it is important that application logic
can be used to control access to code and images so that
engineers do not need to update code each time a license
agreement changes.

License agreements for enterprise software often include
entitlements that address the following common concerns:

Enforcing expirations of licenses, such as
trial or Proof-of-Concept licenses

Controlling feature-based and usage-based entitlements to
facilitate product assortment. For example, license
entitlements can determine a customer’s access to a feature
that is available only under a certain product plan

Limiting the number of instances of an application that can be
run by a single customer

Other application- or customer-specific entitlements. For
example, many Al applications require granular restrictions for
model images to control access to sensitive data, and so it is
necessary to define which images users can access. Other
entitlements might include the number of users permitted, the
number of nodes permitted, and so on.

License

In most cases, software vendors can confidently rely on the license
agreement or contract to enforce entitlements, as enterprise
customers will be wary of violating a software contract. Because of
this, it is likely unnecessary to write application code that prevents
certain actions or blocking usage. Instead, most software vendors will
track or communicate usage that exceeds the contract and "true up"
customers at renewal. One exception to this strategy is enforcing
expiration dates, which can be easily extended by the vendor as
needed to ensure that the enterprise customer can continue using
the software.

Measuring usage surfaces relevant data to both the vendor and the
customer without the negative consequence of reducing or
preventing usage of the software. For vendors, it is helpful to know
how customers are using the software to identify opportunities to
extend or expand the agreement. For customers, understanding their
own usage is valuable for avoiding violations of the contract.

Number of
Active Users

2024-05-10 —
2019-06-05 —

License

Install

Commercial Software
DiStributiOn LifeCYCIG Installing refers to the steps that enterprise customers need to

take to securely deploy software in their environment. For modern

on-prem software, the installation process varies depending on the
release delivery method and the installation environment (such as
online versus air gap installations, or Kubernetes clusters versus

VMs or bare metal servers).

DEVELOP To ensure a good installation experience for all customers, vendors
should provide detailed installation instructions that explain how

each component of the software is configured and installed. This
should include information about upgrading or downgrading, proxy

h installations, advanced configuration options, and any other

Install Stage . . . s .
support installation path. Ultimately, the challenge with installation

« Meet The Full Spectrum Of Customer Needs
« Platform (K8s, VMs)
« Network Access (Airgap, Proxy, Online)
- Controls/Requirements

« Enable Customers To Update & Operate

o)
m
'°O . :)

is that the vendor has to be prepared to meet a spectrum of
customer requirements and sophistication. This increases the
complexity for vendors who need to consider each installation path
in all future releases, testing, updates, support, and so on.

In addition to thorough installation instructions,
— AN the best vendors also provide preflight checks

that customers can run to validate if the
INSTALL LICENSE resources provided meet the hardware,
network, and environment requirements for

the software before proceeding with installation. These types of

checks can help increase the success rate of installations and
upgrades, reducing customer frustration and speeding up the time-
to-value for the application.

Install

2

Customer Environment

Preflight Checks

Install

App

RKRER

Providing an installation GUI can also make it easier for less advanced
customers to complete installation tasks, such as providing their
license or configuring the deployment, without needing to interact
with the command line or edit complex YAML files. This can improve
the customer experience and cut down on installation errors, helping
to reduce the number of support issues related to installation.

Finally, whenever possible, vendors should utilize existing packaging
and installation tooling that is already widely adopted across the
industry. For example, Helm is a popular package manager and
installer for Kubernetes applications used by many modern
enterprises and software vendors. Taking advantage of contemporary
industry standards like Helm avoids the overhead of maintaining your
own installer, and also ensures that many enterprise customers will
already be familiar with the tooling.

That said, many customers might not be proficient enough in
contemporary tools (like Kubernetes and Helm) to successfully install.
There might also be customers who would prefer to install on a VM or
a dedicated Kubernetes cluster rather than attempting to install to an
existing shared cluster. To address these use cases, many vendors

include a Kubernetes installer that delivers Kubernetes alongside the
application so that customers can install on a VM or bare metal

server.

© [
(]

In this case, vendors must ensure that any installer artifacts are either

packaged with the corresponding application release or are published
separately where they can be accessed by customers. This also puts
the burden of Kubernetes management on the vendor, as their
customer will consider it a dependency of the application as opposed
to a core system they manage themselves.

Install

Install

Commercial Software
DiStributiOn LifeCYCIG Reporting refers to gaining visibility into performance and usage

metadata for software instances running in customer-controlled

environments. For example, many vendors will collect:

O Metadata about the environment where the application is
running, such as the Kubernetes distribution, Kubernetes

version, or cloud provider

QQOR Application uptime and service status
2 Adoption data such as the current application version
Usage data such as daily or weekly active users of the
f) application
Report Stage
* Insights Into Customer Instance Uptime 2 days @FXTEED 45 days

Deployments To Enable

I annnm

+ Reporting To Measure Your
. March 12, 2024 Today
Outcomes For Key Indicators

J

In contrast to traditional observability, which often includes a firehose

of logs or key-value pairs from a database, the goal of reporting for

modern enterprise software is to provide insight on application usage
INSTALL LICE and functionality. This type of insight-driven reporting is often
described with terminology such as telemetry, phone home, or

heartbeat.

For vendors, access to reporting data empowers the team to take
more informed action:

O Product and Engineering teams can O Redact sensitive data (such as

use adoption and usage data to database connection strings, >

C— inform prioritization decisions about passwords, or other API tokens)

feature development. For example, from being sent back to the

low feature usage can indicate the vendor environment

need to invest in usability, discoverability, documentation, or in-

product onboarding. O Give customers the opportunity to opt in or out of sending
different types of data. For example, some customers might
O For Customer Success and Sales teams, decreased or plateaued opt to send nothing, or to send only diagnostic data used for
usage for a customer can indicate a potential churn risk, while support purposes

increased usage for a customer can indicate the opportunity to
invest in growth, co-marketing, and upsell efforts. This helps to build trust between the vendor and customer in that

‘ ' security-minded enterprise customers can be assured that the vendor
O For Support teams, performance data, such as simple uptime _
will not collect more data than was agreed to, nor expose them to

data, helps more quickly troubleshoot and resolve issues. . . .
potential security or privacy concerns.

Enterprise customers also often expect access to this reporting data . _ .
Transparency, privacy, and customer choice are also critical for
through formats such as dashboards, data exports, reports, or) _ : _]
o) , reporting on air gap instances, which present unique challenges due
notifications. For example, customers like to see their usage data to _
o) o o , to the lack of outbound internet access. Software vendors can collect
make sure they're within their contractual limits. This is especially]] _ o o
, , , reporting data for air gap instances by providing opportunities for
useful for air gap customers, who will typically self-report when they .
o , ,) customers to send redacted data when opening a support request, or
are over usage limits in order to get back into compliance with the _ _ _
tract through regular surveys. Collecting reporting data from air gap
contract.
environments on a regular basis (such a monthly or quarterly) can

. . . help giv ftware vendors a mor mpl icture of how
When reporting on instances of enterprise software, vendors should elp give software vendors a more complete picture of ho

. : : mers ar ing their software, while providing air mer
adhere to principles of transparency, privacy, and customer choice: customers are using their software e providing air gap customers

valuable insight into their usage.

O Be transparent with customers about the types of data that will
be collected by providing clear documentation

Report Report

Commercial Software
Distribution Lifecycle

........

DEVELOP

-

Support Stage

+ Handle Escalations

 Tools To Streamline Log Collection,
Redaction, Analysis

» Predetermined Disaster Recovery Solution

» Faster MTTR

INSTALL

LICE

Support refers to the services, tools, and documentation offered by a
software vendor that help customers troubleshoot and resolve issues
with their instance of the vendor’s software. Providing robust support
ensures that issues are resolved quickly, reducing interruptions to
usage. This improves the customer experience and builds customer
confidence in the software.

For enterprise software, the scope and breadth of support services
provided by the vendor are often defined in a Service Level
Agreement (SLA). For self-hosted software, SLAs typically define
service agreements for support, such as maximum wait time for
addressing issues, maximum response time for support requests,
standard support hours, and emergency support. For example, 24/7
support hours and a response time of less than three hours for the
most critical support issues are both common expectations for
enterprise customers.

Support teams for modern enterprise software aim to reduce the
mean time to resolution (MTTR) for support issues while also meeting
the agreements defined in the SLA. To be successful, support teams
need:

O Global coverage that enables 24/7 standard support hours

O The necessary training and expertise to address customer

issues

Support

Access to the right diagnostic
information from the customer
environment, such as support
logs, the Kubernetes distribution
and version, and usage data

Accessing diagnostic information from the customer environment is
challenging for on-prem software because the environments are
often disconnected. This means that support engineers cannot
simply SSH into machines or view a stream of observability data.
Instead, software vendors can provide tools that collect redacted
information from the customer environment and run diagnostics.
This type of tooling can not only be used to generate
troubleshooting suggestions for the customer, but can also provide
the option for the customer to send the diagnostic information back
to the vendor for additional support.

Apart from support tools and services, high-quality documentation
and community-based help articles are also critical for providing
customers with the information they need
to self-resolve issues. Keeping the product
documentation and help

articles up-to-date with

troubleshooting information -

for common support issues helps

to avoid multiple different customers

running into the same issue, saving time and frustration.

Support

Conclusion

Distributing software into self-hosted environments poses unique
challenges that require unique solutions and guidelines. By following
the steps outlined in the Commercial Software Distribution Lifecycle,
software vendors can ensure that enterprise customers get the best
possible experience, product teams lead the way towards the most
impactful new features, and development teams prioritize fixing the
right problems.

Develop with the enterprise customer in mind.

Test across as many unique environments as
possible.

License software with simplicity and customization.

Release the right software to the right people using
a consistent approach.

Install by meeting the customer where they are.

Report to surface valuable insights to internal teams
and customers.

Support complex problems with clarity and speed.

Create world-class self-hosted software.

Conclusion

Assessment

Want to see where your team stands in developing self-hosted
software against the Commercial Software Distribution Lifecycle?

Go through this assessment together to analyze your software

Test
' 0 Minimal Testing Outside Of Unit And Functional Tests Of ‘
The Application
1 Test Installation Into Customer Distros And Versions
2 Add CNI, CSI, CRI (Addons) Into Matrix
3 Add Upgrades For Customer Tests
4 Add Customer Representative Data Into Test Matrix
Release
| 0 Release A Version, Customers Find It |
1 Notify Customers On Release
2 Assign Customers To Channels, Work With Various
Release Cadences
3 Required And Skippable Versions
4 Support For Collecting Telemetry Data From Airgap
Installations

maturity.
Develop
r 0 App Contains Thousands Of Services, All Manually
Deployed, No Automation
1 App Is Portable
2 App Is Portable And Customers Can Swap In Databases,
Statefulsets, Infra Components They Manage
3 App Is Resilient (Comes Back On Failure)
4 App Is Highly Available (Avoids Failure)
Assessment

Assessment

License

0 No Licensing

1 Unique Credentials For Registry

2 License Key That The App Validates To Run
Signed Values For Entitlements, Set Expiration Dates,

3 Update
Full License Management System With Advanced RBAC

4 For Images, Easy To Update Entitlements And Sync To
Customer Instances

Install

0 Customers Don't Have Choice (Need Specific K8s, Or
0S)

1 Customers Can Bring Any K8s, Installs With Helm

2 Helm Plus An Embedded Cluster Option

3 Add Airgap Installation Support

4 Support For Existing Environments That Aren't K8s
(Docker, Nomad, ECS)

Assessment

Report
0 No Visibility Into Customer Environments
Basic Telemetry Collected For Online Installations
1 (Installed Or Not, Version, Ip Address, Cloud Provider)
2 Specific Operations Telemetry (Pod Status, Restarting,
Deployment Rollout Status, Etc)
3 Add In Custom Metrics & Telemetry For Usage Reporting
4 Support For Collecting Telemetry Data From Airgap
Installations
Support
0 Customers Grab Logs And Send Them Upon Request
1 Predefined Script To Generate Common Logs
2 Log Gather Tool That Provides Redaction Capabilities
3 Log Gather Tool That Redacts And Analyzes To Give
Customers Insight
4 Regular Snapshots Stored And Team Of 24/7 Experts
Available To Solve Complex Environmental Issues

Assessment

Take the number you selected from each section and add them together.
Where your number falls in the below ranges indicates the quality of your
software distribution architecture and how you can use this information to
improve or exemplify your process.

0-7

8-16

17-23

24-28

There's a lot to be desired in your software distribution
architecture. Make sure to spend time reading through
each section of this book to learn how to improve.

You have some of the basic building blocks, but there's still
a lot of work to do to ensure you're providing a successful
installation experience for all your customers.

You're on the right path, and have put a lot of great work
into ensuring that you can distribute to many different
types of customers. Still, you probably hit customer
installation blockers relatively often and your self-hosted
deployments could be improved.

You have set up an amazing software distribution
architecture, and you're most likely successfully handling
many different installation methods for your customers.

Great job! You've completed the assessment!

Want help improving how you distribute your application to self-hosted
customers? Check out Replicated.com

Assessment

About the Authors

Grant Miller

Grant Miller is the CEO and Co-Founder of Replicated. He has 20+
years of experience in the technology industry, and is also the creator
of EnterpriseReady.io. When not creating products, podcasts, and
articles about enterprise software, he's traveling and exploring with
his wife and two kids. He currently lives in Austin, TX.

Paige Calvert

Paige Calvert is the Documentation Manager at Replicated. She has
10+ years of experience as a technical writer in the enterprise
software space. Outside of tech comm, she enjoys playing volleyball,
testing out new recipes, and watching live theater. She currently lives
in Denver, CO.

Kaylee McHugh

Kaylee McHugh is the Director of Marketing at Replicated. She has 10+
years of experience in the technology industry with roles ranging from
software engineer to CEO and everything in between. In her spare
time she enjoys hiking, snowshoeing, and cozying up with a good
book. She currently lives in Seattle, WA.

About the Authors

http://enterpriseready.io/
http://replicated.com/
https://www.replicated.com/

O— | <K\>| —

https://www.replicated.com/

	Frame 1
	Frame 2
	Frame 3
	Frame 4
	Frame 5
	Frame 6
	Frame 7
	Frame 8
	Frame 9
	Frame 10
	Frame 11
	Frame 12
	Frame 13
	Frame 14
	Frame 15
	Frame 16
	Frame 17
	Frame 18
	Frame 19
	Frame 20
	Front Cover
	Back Cover

