

Table of Contents

Intro

Develop

Test

Release

License

Install

Report

Support

Conclusion

Assessment

About the Authors

05

07

11

15

21

25

29

33

36

37

43

Table of Contents

Intro

Commercial software distribution is the business process that

independent software vendors (ISVs) use to enable enterprise

customers to self-host a fully private instance of the vendor's

application in an environment controlled by the customer.

Since its inception, software distribution into self-hosted

environments has changed drastically. What was once almost

exclusively a process where a Solutions Engineer physically traveled

to a customer’s office, installed software onto dusty servers in a dark

closet, and traveled back to that closet every time an upgrade was

needed, is now replaced with a world of VMs, containers and private

clouds. Yet, the goals for Software Distribution remain the same:

deploy software, quickly and securely, into environments where the

customer has complete visibility and control.

At Replicated, we’ve been enabling self-hosted software for nearly a

decade and have worked with hundreds of software vendors as they

implement a modern approach to this problem. Over this time, we’ve

developed a unique expertise in recognizing and implementing the

key steps to distributing software well. Now, we are sharing what

we've learned with you and empowering every software vendor to

transform how their software is distributed.

Intro

To this end, we’ve developed the Commercial Software Distribution

Lifecycle. Developed through years of trial and error, thousands of

conversations with early-stage startups and Fortune 500

companies, and pulling from the expertise of our staff, the

Commercial Software Distribution Lifecycle represents the stages

that are essential for every company that wants to deliver their

software securely and reliably to customer controlled

environments.

This lifecycle was inspired by the DevOps lifecycle and the SDLC,

but it focuses on the unique things that must be done to

successfully distribute third party, commercial software to tens,

hundreds, or thousands of enterprise customers. The phases are:

Intro

Develop refers to the technical decisions made by software vendors to

prepare software to be consumed by enterprise customers in on-

prem environments. To provide a seamless experience for customers,

software vendors must consider how an application will be distributed

while developing it—not after the fact. This includes considerations

during the design, architecture, and packaging of the application.

When done well, customers can install the application when and

where they want to without any major changes to the application’s

architecture.

An application is developed properly for modern on-prem

deployments when it addresses the following:

The application is resilient. It comes back on failures and is also

built to avoid externally-facing failures. For example, leveraging

cloud-native Kubernetes best practices for packaging will

provide you with a dependable solution for resilience and high

availability.

Develop

load balancer

Develop

Application

YAML

or
database 
 connection 
 string

Customer’s DB

Default Database

The application is developed and tested with an understanding

of the different network settings that enterprises will require.

For most applications, the vast majority of enterprise

customers are not going to give inbound access to their

instance of the application. Others will allow outbound access,

either directly or through a proxy. Finally, the most security

conscious customers will not provide any outbound access to

the internet, also known as an air gap environment. These

network settings can complicate installation, updates,

reporting, and application operations if not thoroughly tested.

When developed well, these considerations allow the enterprise

customer to install the software where and how they want to. They

aren’t limited by the application’s architecture and are able to bring

their own requirements and tooling when needed. In this way, the

application provides the right amount of structure and flexibility for

the enterprise customer to be successful, whether this is the first self-

hosted application they are deploying or the 100th.

Develop

The application uses components that are portable, so vendors

and customers are not locked in to specific cloud providers or

services. This makes the application more self-contained and

portable. For example, using an open-source queuing solution like

RabbitMQL as opposed to AWS’s SQS will provide more

portability.

The application is packaged with open

standards whenever possible, rather  

than providing custom scripts or bespoke

installers. For example, most enterprise

customers are familiar with Helm because  

it provides a consistent, reusable, and

shareable packaging format. For customers who aren't familiar

with Helm or Kubernetes, vendors can provide alternative

installation options that treat Kubernetes as a dependency

without exposing it to the customer.

The application follows the principle of least privilege to minimize

the privileges required from the enterprise customer’s cluster,

including avoiding tools that require escalated permissions. For

example, not expecting to be able to deploy operators into

existing clusters as RBAC may not allow it.

The application allows customers the choice of supplying required

services as part of the installation, as opposed to utilizing

whatever services are embedded with the application. For

example, enterprise customers should be able to provide a

connection string to their own database rather than using the

embedded database option.

Develop

Testing refers to ensuring that enterprise software can be successfully

and reliably distributed to current and future customer-managed

environments. Ideally, testing happens before the application ever

gets into the hands of customers. Different customer environments

act differently, and the same application successfully installed in one

customer environment could present challenges in the next. For this

reason, testing self-hosted software needs to go beyond unit and

integration tests and also focus on the environments where the

application will be deployed.

Software vendors should consider the following when creating a

testing stack for modern on-prem software distribution:

Expect different customer environments to act differently. For

example, don’t anticipate a deployment into an OpenShift

environment to require the same steps as a deployment into

AKS. Each customer-representative environment might require

different elements to be tested.

Test that different configurations of the application deploy

successfully in the same environment. For example, test

different database configurations or different core services.

Test

Test

Test

Self-hosted software presents a unique challenge, in that both the

application and the customers’ environments could be the cause for a

failed deployment. Tests should verify that the software functions

correctly, regardless of the environment where it’s going to be

deployed. In doing so, vendors will be on the path to satisfy internal

teams and create a positive customer experience where every

deployment is successful on the very first attempt.

AWS

Add tests to continuous integration (CI) pipelines. This ensures

that tests run automatically before each new release without

requiring manual intervention from the team. Logic can also be

added to CI pipelines to prevent releases from being shipped

unless all tests pass.

Test for environments that are likely to be supported in the

future, especially if those environments have additional

security requirements or complexity. For example, test highly

complex environments such as OpenShift before ever signing a

customer that uses OpenShift.

EKS
FAIL

GKE
PASS

AKS
PASS

KIND
PASS

FAIL

PASS

Ensure that testing environments are representative of current

customer environments. For example, if different customers

are using AKS and EKS, then tests should validate both those

distributions.

Test // 13

Release

Releasing refers to the process of delivering software to licensed

users, ensuring that new features, improvements, and bug fixes get

into the hands of the right customers at the right frequency.

Key considerations for vendors when releasing modern enterprise

software include:

The following sections explain each of these considerations in greater

detail.

Making application images available for customers to access

securely

Packaging and publishing release artifacts in multiple formats

to support different installation methods and customer

environments

Managing release streams for different customers, including

automating workflows for production (GA) and pre-release

(alpha, beta) versions

Versioning releases with a consistent pattern so that it is easy

for customers to understand backward compatibility

Release

Allow enterprise customers to choose the release asset they need

based on their unique preferences and requirements. For example, a

vendor might need to publish all of the following for a single release:

Package and Publish Release Artifacts

Releases should be made available in multiple formats to support

different installation methods and customer environments. For

example, while some enterprise customers with Kubernetes expertise

will prefer to install in their own cluster, others will prefer to install on

a virtual machine (VM) or bare metal server. Additionally, enterprises

with an emphasis on security might need to deploy software in air gap

environments with no outbound internet access.

Raw artifacts, such as Helm charts or containers

Downloadable archives that contain the release images for air

gap installations

Installation scripts, such as scripts that install the application in

Kubernetes clusters or on VMs

Release assets that are specific to the operating system, such

as unique assets for installations in Linux or Windows

environments

Release

For online (internet-connected) environments, proxy servers can be

used to grant proxy, or pull-through, access to images. Proxies work

as an intermediary between the software vendor’s private image

registry and the enterprise customer, allowing users to access images

on the vendor’s private registry without exposing registry credentials.

With a proxy, customers can access images using credentials

determined by the software vendor, such as providing their unique

license or customer ID.

Securely Accessing Images

A single release for an application contains all the artifacts required to

install and run the application, such as container images or

executables. When publishing a release for distribution to on-prem

environments, software vendors need to make images available to

customers securely.

For air gap environments, customers must have access to

downloadable archives that contain the release images so they can

push images to their own registry.

As discussed later in the License and Report phases, all of this activity

can be tracked for auditing and reporting.

Internal

Repos

CI Cloud

SaaS

Registry

Proxy

On-Prem

Release

To minimize the need for manual intervention when releasing new

versions, continuous integration and continuous delivery (CI/CD)

pipelines should include workflows that automate release management

and publishing. For example, vendors could create Github workflows  

that run tests, publish releases to the right channel, and notify

customers subscribed to the channel that a new version is available.

Release Versioning

Software vendors should assign and increment version numbers for

releases using a consistent pattern, such as Semantic Versioning

(SemVer). SemVer is a commonly-used and recommended versioning

strategy that provides implicit information about the backwards

compatibility of each version, using the format MAJOR.MINOR.PATCH.

The release versioning pattern used should also dictate how build

metadata and pre-release versions are indicated. For example, with

SemVer, alpha or beta versions are denoted by appending a hyphen

followed by the pre-release label or version number, such as 1.0.0-

alpha or 1.2.3-0.0.2.

A consistent versioning pattern such as SemVer is important for

modern commercial software distribution because it is common for

vendors to support (and continue to release patches on) multiple

different versions of their software concurrently. SemVer enables this

because enterprise customers can easily understand that a new patch

release is backwards compatible with the corresponding minor

version, without needing to worry about breaking changes.

4 . 7 . 6
Major Version
Major changes
breaks the API

Bug fixes

Minor change doesn’t break the API
Minor Version

Patches

Release

ChannelCustomer 1

Customer 2

Release 1.2.3

Release Management

Release management is also important for ensuring that each release

is made available to the right subset of users (including internal teams

and customers), and that the vendor has control over the frequency

that new releases are published. A successful release management

practice achieves these goals with minimal maintenance burden for

the vendor.

One common release management strategy is publishing releases to

different channels or lanes. For example, vendors might keep  

separate channels for internal-only, experimental, beta, and generally

available (GA) releases. Enterprise customers and internal users can

then access the releases published to the channel where they are

subscribed.

Channels can be useful as a release management tool because they

allow vendors to create a logical separation between different types of

releases, including those releases intended only for internal

development and testing, without having to manually grant and

restrict access to features or risk prematurely releasing new code.

Channels also provide flexibility in release frequency, allowing

vendors to more quickly publish updates to internal or pre-release

channels while maintaining a different pace for GA releases.

Release

Licensing refers to securely granting access to software. Licensing

codifies the agreements defined in the software contract between the

vendor and the enterprise customer, and makes those agreements

available to the underlying application through a license server during

startup or runtime.

Licensing is a cross-functional concern as it is important to many

different teams that licenses are easy to create, update and sync to

customer instances:

For Sales teams, the license server that keeps track of users

and entitlements should be integrated with internal CRM tools,

such as Salesforce. This allows customer entitlements to be

easily turned on and off based on changes to the software

contract.

Customer 
EnvironmentVendor Environment

App
CRM

Expiration: 12-05-25
Expiration:

12-05-25

License Server

Support teams should be able to use the license as a unique

customer identifier to get visibility into insights such as the

customer’s entitlements and product usage.

License

License

Measuring usage surfaces relevant data to both the vendor and the

customer without the negative consequence of reducing or

preventing usage of the software. For vendors, it is helpful to know

how customers are using the software to identify opportunities to

extend or expand the agreement. For customers, understanding their

own usage is valuable for avoiding violations of the contract.

Measuring and Reporting Usage

In most cases, software vendors can confidently rely on the license

agreement or contract to enforce entitlements, as enterprise

customers will be wary of violating a software contract. Because of

this, it is likely unnecessary to write application code that prevents

certain actions or blocking usage. Instead, most software vendors will

track or communicate usage that exceeds the contract and "true up"

customers at renewal. One exception to this strategy is enforcing

expiration dates, which can be easily extended by the vendor as

needed to ensure that the enterprise customer can continue using

the software.

N
um

be
r

of
  

A
ct

iv
e

U
se

rs

20
24

-0
5-

10

20
19

-0
6-

05

License

For Engineering teams, it is important that application logic

can be used to control access to code and images so that

engineers do not need to update code each time a license

agreement changes.

License Entitlements

License agreements for enterprise software often include

entitlements that address the following common concerns:

Enforcing expirations of licenses, such as

trial or Proof-of-Concept licenses

Controlling feature-based and usage-based entitlements to

facilitate product assortment. For example, license

entitlements can determine a customer’s access to a feature

that is available only under a certain product plan

Limiting the number of instances of an application that can be

run by a single customer

Other application- or customer-specific entitlements. For

example, many AI applications require granular restrictions for

model images to control access to sensitive data, and so it is

necessary to define which images users can access. Other

entitlements might include the number of users permitted, the

number of nodes permitted, and so on.

License

Install

Install

Installing refers to the steps that enterprise customers need to

take to securely deploy software in their environment. For modern

on-prem software, the installation process varies depending on the

release delivery method and the installation environment (such as

online versus air gap installations, or Kubernetes clusters versus

VMs or bare metal servers).

To ensure a good installation experience for all customers, vendors

should provide detailed installation instructions that explain how

each component of the software is configured and installed. This

should include information about upgrading or downgrading, proxy

installations, advanced configuration options, and any other

support installation path. Ultimately, the challenge with installation

is that the vendor has to be prepared to meet a spectrum of

customer requirements and sophistication. This increases the

complexity for vendors who need to consider each installation path

in all future releases, testing, updates, support, and so on. 

2
3

1

In addition to thorough installation instructions,

the best vendors also provide preflight checks

that customers can run to validate if the

resources provided meet the hardware,

network, and environment requirements for

the software before proceeding with installation. These types of

checks can help increase the success rate of installations and

upgrades, reducing customer frustration and speeding up the time-

to-value for the application.

include a Kubernetes installer that delivers Kubernetes alongside the

application so that customers can install on a VM or bare metal

server.

In this case, vendors must ensure that any installer artifacts are either

packaged with the corresponding application release or are published

separately where they can be accessed by customers. This also puts

the burden of Kubernetes management on the vendor, as their

customer will consider it a dependency of the application as opposed

to a core system they manage themselves.

App

InstallInstall

Providing an installation GUI can also make it easier for less advanced

customers to complete installation tasks, such as providing their

license or configuring the deployment, without needing to interact

with the command line or edit complex YAML files. This can improve

the customer experience and cut down on installation errors, helping

to reduce the number of support issues related to installation.

Finally, whenever possible, vendors should utilize existing packaging

and installation tooling that is already widely adopted across the

industry. For example, Helm is a popular package manager and

installer for Kubernetes applications used by many modern

enterprises and software vendors. Taking advantage of contemporary

industry standards like Helm avoids the overhead of maintaining your

own installer, and also ensures that many enterprise customers will

already be familiar with the tooling.

That said, many customers might not be proficient enough in

contemporary tools (like Kubernetes and Helm) to successfully install.

There might also be customers who would prefer to install on a VM or

a dedicated Kubernetes cluster rather than attempting to install to an

existing shared cluster. To address these use cases, many vendors

Preflight Checks

Install

Customer Environment

App

Report

Report

Reporting refers to gaining visibility into performance and usage

metadata for software instances running in customer-controlled

environments. For example, many vendors will collect:

In contrast to traditional observability, which often includes a firehose

of logs or key-value pairs from a database, the goal of reporting for

modern enterprise software is to provide insight on application usage

and functionality. This type of insight-driven reporting is often

described with terminology such as telemetry, phone home, or

heartbeat.

Metadata about the environment where the application is

running, such as the Kubernetes distribution, Kubernetes

version, or cloud provider

Application uptime and service status

Adoption data such as the current application version

Usage data such as daily or weekly active users of the

application

Instance Uptime

March 12, 2024 Today

2 days 45 days2 weeks

For vendors, access to reporting data empowers the team to take

more informed action:

Report

Give customers the opportunity to opt in or out of sending

different types of data. For example, some customers might

opt to send nothing, or to send only diagnostic data used for

support purposes

Redact sensitive data (such as

database connection strings,

passwords, or other API tokens)

from being sent back to the

vendor environment

This helps to build trust between the vendor and customer in that

security-minded enterprise customers can be assured that the vendor

will not collect more data than was agreed to, nor expose them to

potential security or privacy concerns.

Transparency, privacy, and customer choice are also critical for

reporting on air gap instances, which present unique challenges due

to the lack of outbound internet access. Software vendors can collect

reporting data for air gap instances by providing opportunities for

customers to send redacted data when opening a support request, or

through regular surveys. Collecting reporting data from air gap

environments on a regular basis (such a monthly or quarterly) can

help give software vendors a more complete picture of how

customers are using their software, while providing air gap customers

valuable insight into their usage.

Report

Product and Engineering teams can

use adoption and usage data to

inform prioritization decisions about

feature development. For example,

low feature usage can indicate the

need to invest in usability, discoverability, documentation, or in-

product onboarding.

For Customer Success and Sales teams, decreased or plateaued

usage for a customer can indicate a potential churn risk, while

increased usage for a customer can indicate the opportunity to

invest in growth, co-marketing, and upsell efforts.

For Support teams, performance data, such as simple uptime

data, helps more quickly troubleshoot and resolve issues.

Enterprise customers also often expect access to this reporting data

through formats such as dashboards, data exports, reports, or

notifications. For example, customers like to see their usage data to

make sure they're within their contractual limits. This is especially

useful for air gap customers, who will typically self-report when they

are over usage limits in order to get back into compliance with the

contract.

Be transparent with customers about the types of data that will

be collected by providing clear documentation

When reporting on instances of enterprise software, vendors should

adhere to principles of transparency, privacy, and customer choice:

Support

Support

Support refers to the services, tools, and documentation offered by a

software vendor that help customers troubleshoot and resolve issues

with their instance of the vendor’s software. Providing robust support

ensures that issues are resolved quickly, reducing interruptions to

usage. This improves the customer experience and builds customer

confidence in the software.

For enterprise software, the scope and breadth of support services

provided by the vendor are often defined in a Service Level

Agreement (SLA). For self-hosted software, SLAs typically define

service agreements for support, such as maximum wait time for

addressing issues, maximum response time for support requests,

standard support hours, and emergency support. For example, 24/7

support hours and a response time of less than three hours for the

most critical support issues are both common expectations for

enterprise customers.

Support teams for modern enterprise software aim to reduce the

mean time to resolution (MTTR) for support issues while also meeting

the agreements defined in the SLA. To be successful, support teams

need:

Global coverage that enables 24/7 standard support hours

The necessary training and expertise to address customer

issues

Conclusion

Conclusion

Distributing software into self-hosted environments poses unique

challenges that require unique solutions and guidelines. By following

the steps outlined in the Commercial Software Distribution Lifecycle,

software vendors can ensure that enterprise customers get the best

possible experience, product teams lead the way towards the most

impactful new features, and development teams prioritize fixing the

right problems.

Develop with the enterprise customer in mind.

Test across as many unique environments as
possible.

License software with simplicity and customization.

Release the right software to the right people using
a consistent approach.

Install by meeting the customer where they are.

Report to surface valuable insights to internal teams
and customers.

Support complex problems with clarity and speed.

Create world-class self-hosted software.

Support

Access to the right diagnostic

information from the customer

environment, such as support

logs, the Kubernetes distribution

and version, and usage data

Accessing diagnostic information from the customer environment is

challenging for on-prem software because the environments are

often disconnected. This means that support engineers cannot

simply SSH into machines or view a stream of observability data.

Instead, software vendors can provide tools that collect redacted

information from the customer environment and run diagnostics.

This type of tooling can not only be used to generate

troubleshooting suggestions for the customer, but can also provide

the option for the customer to send the diagnostic information back

to the vendor for additional support.

Apart from support tools and services, high-quality documentation

and community-based help articles are also critical for providing

articles up-to-date with  

troubleshooting information  

for common support issues helps  

to avoid multiple different customers  

running into the same issue, saving time and frustration.

customers with the information they need

to self-resolve issues. Keeping the product

documentation and help

Assessment

Test

Release

Minimal testing outside of unit and functional tests of
the application

release a version, customers find it

test installation into customer distros and versions

 notify customers on release

add upgrades for customer tests

required and skippable versions

add customer representative data into test matrix

support for collecting telemetry data from airgap
installations

add CNI, CSI, CRI (addons) into matrix

assign customers to channels, work with various
release cadences

0

0

1

1

2

2

3

3

4

4

Assessment

Assessment

Want to see where your team stands in developing self-hosted

software against the Commercial Software Distribution Lifecycle?

Go through this assessment together to analyze your software

maturity.

Develop

app contains thousands of services, all manually
deployed, no automation

app is portable

App is resilient (comes back on failure)

App is Highly available (avoids failure)

app is portable and customers can swap in databases,
statefulsets, infra components they manage

0

1

2

3

4

Assessment

Report

Support

No visibility into customer environments

customers grab logs and send them upon request

Basic telemetry collected for online installations
(installed or not, version, ip address, cloud provider)

predefined script to generate common logs

add in custom metrics & telemetry for usage reporting

log gather tool that redacts and analyzes to give
customers insight

support for collecting telemetry data from airgap
installations

regular snapshots stored and team of 24/7 experts
available to solve complex environmental issues

Specific operations telemetry (pod status, restarting,
deployment rollout status, etc)

log gather tool that provides redaction capabilities

0

0

1

1

2

2

3

3

4

4

Assessment

License

Install

no licensing

customers don't have choice (need specific k8s, or
OS)

Unique credentials for Registry

customers can bring any k8s, installs with Helm

signed values for entitlements, set expiration dates,
update

add airgap installation support

full license management system with advanced RBAC
for images, easy to update entitlements and sync to
customer instances

Support for existing environments that aren't K8s
(Docker, Nomad, ECS)

license key that the app validates to run

Helm plus an embedded cluster option

0

0

1

1

2

2

3

3

4

4

Kaylee McHugh is the Director of Marketing at Replicated. She has 10+
years of experience in the technology industry with roles ranging from
software engineer to CEO and everything in between. In her spare
time she enjoys hiking, snowshoeing, and cozying up with a good
book. She currently lives in Seattle, WA.

Kaylee McHugh

Grant Miller is the CEO and Co-Founder of Replicated. He has 20+
years of experience in the technology industry, and is also the creator
of EnterpriseReady.io. When not creating products, podcasts, and
articles about enterprise software, he's traveling and exploring with
his wife and two kids. He currently lives in Austin, TX.

Grant Miller

Paige Calvert is the Documentation Manager at Replicated. She has
10+ years of experience as a technical writer in the enterprise
software space. Outside of tech comm, she enjoys playing volleyball,
testing out new recipes, and watching live theater. She currently lives
in Denver, CO.

Paige Calvert

About the Authors

About the AuthorsAssessment

Great job! You’ve completed the assessment!

Want help improving how you distribute your application to self-hosted
customers? Check out Replicated.com

There's a lot to be desired in your software distribution
architecture. Make sure to spend time reading through
each section of this book to learn how to improve.

You have some of the basic building blocks, but there’s still
a lot of work to do to ensure you’re providing a successful
installation experience for all your customers.

You’re on the right path, and have put a lot of great work
into ensuring that you can distribute to many different
types of customers. Still, you probably hit customer
installation blockers relatively often and your self-hosted
deployments could be improved.

You have set up an amazing software distribution
architecture, and you’re most likely successfully handling
many different installation methods for your customers.

Take the number you selected from each section and add them together.
Where your number falls in the below ranges indicates the quality of your
software distribution architecture and how you can use this information to
improve or exemplify your process.

0-7

8-16

17-23

24-28

http://enterpriseready.io/
http://replicated.com/
https://www.replicated.com/

replicated.com

https://www.replicated.com/

	Frame 1
	Frame 2
	Frame 3
	Frame 4
	Frame 5
	Frame 6
	Frame 7
	Frame 8
	Frame 9
	Frame 10
	Frame 11
	Frame 12
	Frame 13
	Frame 14
	Frame 15
	Frame 16
	Frame 17
	Frame 18
	Frame 19
	Frame 20
	Front Cover
	Back Cover

